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THIRD OVERTONE QUARTZ RESONATOR

R.D. Mindlin
89 Deer Hill Drive, Ridgefield, CT 06877, U.S.A.

\

ABSTRACT - The Lee-Nikodem equations of motion of elastic plates are solved
for the case of vibrations of an AT-cut quartz strip, with free faces and
edges, at frequencies up to and including the third harmonic thickness-shear

overtone.
i \

1. Introduction

About 30 years ago, A.W. Warner [1] developed a high precision
crystal-plate resonator utilizing *he third harmonic overtone of thickness-
shear vibration, i.e. a mode involving a thickness-shear motion with three
nodes across the thickness of the plate rather than the one node of the
fundamental thickness-shear mode. At about the same time, equations were
developed which extended the classical (Lagrange-Germain-Cauchy) range of
frequencies to include that of the fundamental thickness-shear mode; but it
was not until much later that Lee and Nikodem [2,3] formulated equations
suitable for studying vibrations at frequencies of the harmonic overtone
modes of thickness-shear.

In the present paper, the Lee-Nikodem third-order equations are

solved for a case of rotated-Y-cut quartz plates with free faces and a pair

of parallel, free edges. The results of computations for the AT-cut plate
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are presented for vibrations in the neighborhood of the frequency of the
fundamental thickness-shear mode and in the neighborhood of the third
harmonic overtone. The differences between the two exhibit some of the

reasons for the higher stability of the latter.

2. Lee-Nikodem Equations

To obtain two-dimensional equations of motion of plates from the
three-dimensional equations of linear elasticity, Lee and Nikodem start with
an expansion of the three-dimensional, rectangular components of displacement,
u.Jj=1,2,3, in series of trigonometric functions of the thickness-coordi-
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nate, X5 s of the plate:
TELY RE

uj = Z ugn) cos nB .: 'i"r":—.;\(;_-. (])

n=0 2L

b B
| ro . .

where the u(") are independent of Xy and

J
B = w(1-xyb)2 ﬁ o (2)
N ;
LY L

in which b 1is the half-thickness of the plate. The functions cos ng give
the shapes of the simple thickness-modes of an infinite, isotropic plate with

free faces at x, =+ b.
The expression (1), for the uj » 1s substituted in the variational

equation of motion [4]:

!
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where

.4”13,1 - pii;)éusdV = 0 (3)

where the Ti 3 are the components of stress, p 1is the mass density and
V 1is the volume. The integration is performed over the thickness of the
plate and leads to stress-equations of motion of order n; which are,

omitting the terms accounting for surface tractions,

‘") - (nm/2b) T(“) - enpU§n) , (4)
where

b b
T(") = b'] fTij €os nB dxz. ng) = b.]fTij sin nB d"z'

ij
(5)

and en=2 for n=0 and en=1 for n>0. (Corrections of [3] by a
factor of 2, for n=0, were kindly supplied by Professor Lee).

The three-dimensional strain-displacement relations,

Siy = Qugq*uy 02, (6)
become, with (1),
Si = Z (S(") cos ng + 3(") sin n8) , (7)
n=0




Ssg) = (ug?-)i + usr:})/z » S'(lg) = n1'|'(521u§.n) + 5 (n))/4b (8)

and 61j is the Kronecker delta.

The three-dimensional stress-strain relations,

Skz’ 1,J,ks2°1,2,3 or T, = ¢. S, p,q=1...6, (9)

ii T Cijke p Pq’q

become, from (5) and (6),

ng) ukz(e s(n) ;A (m)) T(") - cisz S(“) ZAnmsl(&l) . (10)

where

Arm = 0, m+n even; 4m/(m2-n2)1r,m+n odd. (1)

The components of stress (10) are derivable from a strain energy

density, U, according to

ng) . aU/as(“). Tg'j‘) - BU/BS%') (12)

where

L
. c”kgz [ensgg)s(n) sgg)sl(&) +2=1 (Amsgg)gl(&\) . AnmSSS" s(m))

n=Q
(13)
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3. Reduction to a Special Case

The example to be studied is one of steady vibrations at frequencies
high enough to include the third harmonic overtone of the thickness-shear
family of modes of an AT-cut quartz plate bounded by free faces at x, =% b
and free edges at x;=ta. The modes are to be straight-crested along X3

and antisymmetric with respect to both X and X5 . Thus, we take, of (1),

only
u = (u(” cos B + u§3) cos 38) elut R
b = 0+ o cos 28y &, 0
up = (u(O) :(32) cos 28) eiwt’

in which the uJ(") depend only on Xq . The second term in Uy accommodates
the third harmonic overtone thickness-shear mode.

What remain of the stress-equations of motion (4) are

(0) 2 (0)

1{0) 2.(0) _

=0, T3, + 2ewug

2 (2)

il . (n/Zb)T“) 2u§1) =0, g)] -(ﬂ/b)T(Z) + pwu = 0,

T,
3
T8 - (o)1) + wlf?) < o, 7:121 - G2+ wWlul¥ « 0.

(15)

and the only non-zero components of strain are, from (8) and (14),
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0 . (0 0) _ (0
Sg ) . ug’% . Sé ) = ug’% .
stV = ), 51 = (w2p)u{V)
s = ) = ugd s (1)
sgz) = (ﬂ/b)ugz) , ng) = (ﬂ/b)ugz) ,
s{3) - W3, 5(3) = ()l |

Nine constants of elasticity, referred to axes in and normal to the
plane of the plate (with X; an axis of two-fold symmetry of the elastic pro-
perties of quartz), enter into the present example. As computed by A. Ballato

[5] from R. Bechmann's [6] principal constants, they are (in N/m2)<10'9):

S 86.74 Ci2 = -8.260543013 Cgg = 68.80698505 L
Cyy = 129.7663387 Coy = 5.700423178 Ce6 = 29.01301496
Caq = 38.61152627 Clg = -3.654869573 Cgg = 2,.533571817

Of the remaining twelve constants, four (c]3. €3 C33» c43) do not enter
into the present example, as the modes are independent of Xq 3 and the others
(CIS’ Cogs C355 Cags Crg Co60 360 °46) are zero for the rotated-Y-cuts of
quartz.

Lee and Nikodem introduce a low frequency correction factor k] and a

high frequency correction factor k2 . The former appears as a factor of A]o

in the strain energy density appropriate to the present example:




2y = z(csssgo)s§°) + CGGSéO)Séo) + 2c565g0)5é0)) + c]]ss‘)sg’)

2)c(2 2)(2 3
SIS Q@ P2 gD 0D

* G55 * C66%6

2)¢(2 2)(2 2)¢(2 Vel 3)s(3
R R R S LR SR S

* 6

0 2
+ 2k, A sé ) sé )

10{6 575! + 22

+ eggsi 5G

12{%66
2
5{2)

* Cs6

* 2“21“125£2) * °14S£2))5§]) + 2 * ey

2 2)\e(3
5ssé Ve °565§ ))Sé ’,

23(%2

+ 2y (ceeStY) + egesi?El) + 2ag(c -

where

Ay = 4/, Ap = -4/, Ay = 8/3n ,
(18)
A23 = -8/5ﬂ ' A

=4/3n , . A,, = 12/57.

32

The correction factor k2 s in the present example, is inserted as a divisor
of the tem 2pm2u§°) in the first of (15).

Adjusted values of k.| and k2 s as supplied by Professor Lee, are

kf - /8, k§ « 0.901. (19)

From (12), (17) and (16), the surviving stress-displacement relations
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TS = 2eggui®) + cgglugl) + ke Tu{M bl
Mg = 2eggul®) + egglug) + kpp”uf) + 67,

) - epud!) + (8730)(cppu82) + ¢ ulP)y

188 = cqul® + cggluf?) - (ranu{M + (1a/50)u{P,

ng) - cssugf% . c66[u§f% - @)1 + (arso)ly,

(20)

A+ (@r50) (e 057 + qu?)

(3) _ (
T = oYy 3

1y - <4k1/")<=ss"§?%‘*cse"§?%>'*<“/2b>c55"§" - (4/3")(°56“§f%'*°56“§3%)'
Tég) = (B/n)clz(u§1%/3 - u%?%/S) + (w/b)(czzugz) + c24u§2)) ,
TS = @rmeyq(ul/3 - ul3rs) + (urb)(epqul?) + cQqui?)y

i3 - (4/3u)(c56u§?{ + csaugg%) + (12/5«)(c56u§f% + cssugf%)-+(3n/2b)c66u§3).

The displacement equations of motion, to be solved, are obtained by
substituting the stress-displacement relations (20) into the stress-equations
of motion (15) --with ko inserted in the first of (15), as mentioned
previously.

Finally, the edge conditions are

1 2 3
T%g) = T%g) = T%]) = T$3) = T%g) = T%]) = on X] =+a, (2])




4, Dispersion Relation

In (14) we take, omitting the factor ei“t .

>' 1 uéo) = Aéo) sin Exq u§2) = Agz) sin Exqy, ‘
!
’ ugo) = Ago) sin £x;» ugz) = Agz) sin £xq (22)
u%” = A%]) Cos &Xq» u§3) = A%” cos £x,

and substitute first in (20) and the result in (15) to produce a set of six
simultaneous, homogeneous, linear algebraic equations in the six ampiitudes
A§“) of (22):

(0) (o) (1) (3) _
Ayt tap AT raA T+ 0 v 0 0

a A + a0 b o a0 v 0 +a,ald .
a, A7)+ a gl s ag AV ks ni? s aalP e 0 -0 (23)
0+ 0 +agal) v agal e, Al v el - o
0+ 0 +agall v agal® s agal® e aald o

(0) (0) (2) (2) (3) .
a.|6A2 +a26A3 + 0 + a46A2 + a56A3 + "66"] 0

The coefficients a made dimensionless and real by some manipulations

pq
= of the equations, are
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P 2 Lo 2 . S2 .
e oz 22 o = o2 e 2

ag3 = (81,22 4100022, agy = -801442,,)2%/3m, agg = 4(43,, - Egg)23m

(24)
2. o2 . . = 1.2
g =T + A0y -0, g = 4c24 + Cgpl's 3y 4(9 + 4c,2)z /5,
Ar = Cps2l + 834, - 92, ag = (43, + 95cc)22/5M
55 55 44 ’ 56 14 56 ’
36 = (E”z2 +9 - 92)22 s

where

2=26b/n, Q=ww, & = 1r2c66/4pb2 . qu = cpq/C66 :

j.e. 2 1is the ratio of the thickness of the plate to the half-wave-Tength
along the plate and Q 1is the ratio of the frequency to that of the funda-
mental thickness-shear mode of the infinite plate.

The detemminant of the coefficients of the A§") , Set equal to zero:

=0, (25)

produces the dis-

persion relation Q vs. 2z: a sextic, algebraic equation in z2 . The

in which a]4 = a]5 = a24 =3, = a36 =0, apq = aqp.

equation is the same as (43) of [3] except for the factors 2 in 231 3320 35,
as already noted above in connection with (4). Also, here, all the elements

a,, are real as a result of multiplication of the third and sixth rows and

columns by z.
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The six branches of the dispersion relation, computed on the HP-85
micro-computer, are illustrated in Fig. 1. The characters of the branches

are indicated by their identifying symbols:

-n
n

Flexure
: FS = Face-shear
; 1, = 15t Thickness-shear (in x]-direction)
; 2, = 2" Thickness-shear (in x3-direction)
3 = 3nd (Harmonic) Thickness-shear (in x]-direction)
2, = 2" Thickness-stretch (in xz-direction)

The subscripts in the symbols 1]. 23, 3], 22 designate the direction of
displacement (or predominant displacement) at z=0, whereas the numbers
themselves give the number of nodes between Xy = +b. Thus: in 23 the
displacement at z=0 is predominantly in the direction of X3 with two
5 nodes across the thickness of the plate. Note that the roots z for branches
F and FS are real for all Q, but the roots for the remaining four
branches may be real or imaginary, depending on the frequency. If imaginary,
the variation of displacement along Xy is exponential or hyperbolic rather
than trigonometric.

The zigzags in the curves in Fig. 1 result from the spacing of dots
on the cathode ray tube display of the HP-85. The figure is the HP-85's hard
copy of the CRT display. The roots 2z were actually computed to an accuracy
of 10'9 -- a precision required for their subsequent use in solving (34) and

} (37). Intervals of 0.02 in Q were employed for Fig. 1, resulting in a com-

putation time, for the range 0<Q<4, of about 6 hours or about 18 seconds

.




per root. The secant iterative method was used, with starting values given

by the following approximate formulas, followed by increments of 10°% in

E 2.
| } 2

2
) F . Z;

25

| G

. ’
! Fs : 25

"
e e ———tt - — ——

. .2
3].25

for convergence of

6.42258(1+6)2%[1 + (1+K)51/72 ,

7228y - S plEp0)s K = 46(272-1)/(146)°

2

0.44119 @

{2.229(92/92 -1, a<g,

0.42395(2%/05 - 1), @ > 2 »

= ]6(92/92 - ])n Q> QG ’
= 2T,y 4T T LGy - G+ 453435}

{0.33799(92 -9), a<3,

0.40651(2° - 9), @ > 3.

These trial roots match closely or exactly the roots of the sextic at

the iteration for all 0<Q<4,

(26)

(27)

(28)

(29)

(30)

(31)

(32)

z2=0

and at Q=0,3 (except zg at 2=3) resulting in trial values adequate




m—— e memd meme

5. Frequency Spectrum

2

For each of the roots zn

0 1
)

may be found from five of the six equations (23). Thus, with the

omitted, we may write

ay(zgag) *applzpop) + 00 v 0+,
a12(zp3p) * 2pp(zmpp )+ 0 + 0 * 326%n
o ¢+ 0 +ag(z0s,) +ag5(za,) + 3460,
o+ 0 +ag5(zpa,) + agglzpag,) + aggag,

316(200p) + 356(2051) + 856(2 005 ) + 3ge(2/0,0) + agcas)

NI ey AR s KD 2o A1

of (25), five amplitude ratios, say

* 05y

(33)

third of (23)

(34)

This form is chosen because the Z Qe Z 09 zn°3n' Z,%n and Qg are

real for all Q , as are also the apq -- as arranged previously.

With the six 2z, from (25) and the thirty o

pn

we my now write, in place of (22):

determined from (34),
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6 6
U . 0) . .
2~ ¢ ~ Aty SN EpXq < ;An“Zn S &%y o
(1) 3 (2)
1) . 2) . .
" = nZ An cos £ .X{ » u, & An°‘3n sin £ X » (35)

(2) = i (3) =
u3 2 An“4n sin Enx] . u] - An“Sn cos gnx] .

Upon substituting the displacements (35) in the formulas (20) for the

stresses and the results in the edge conditions (21), we have the six equations:

6
;Anbrm = 0, m=1...6, (36)

where
by = (CggZpiin * CogZndon * 2KiEse/m + 2eggugy/micos 28
by * (2,94 * CoeZpdon * 2Ky/T + 2ug,/m)cos z24 .,
by = (-Epy22 + 162,05,/3 + 168,42,04n/ 33, 0 Tt
by, = (-4Cgg/3m + Cgezaq, + Cs52n%4n * 36556a5n/51r)cos 'i"z R
bg, = (~4/3n + 2 a + TgeZ a, + 3ag, /5n)cos 28

- - - - 2 | A
bsn (lbc]zzna3n/5n + 16c14zna4n/51r + t:.nznm!.m)z'I sin zt

in which z, = 1rzn/2 . enb, £=a/b and the b, are real for all Q.
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The roots £ of the equation obtained by setting the 6x6 determinant

of the coefficients of the A , in (36), equal to zero:
] 1 lbmnl =0, (37)

produce the data for plotting a frequency spectrum Q vs. a/b.

The results of computations in the two ranges:

| 0.99 <2 <1.01, 16<a/b< 24

and
o 2.995 < @ < 3.005, 18 < a/b < 22

|
{ are illustrated in Figs. 2 and 3. To construct these figures, the six roots

z, of the sextic (25) were first computed for a given Q. Then the five

linear equations (34) were solved for the a for each of the six z, and

pn

the resulting combinations of a and z, substituted in the transcendental

n
equation (37), after which the r:nge of (= a/b) was traversed in steps of
0.1 for Fig. 2 and 0.025 for Fig. 3 and the value of Ibmnl computed at
each step. A change of sign of Ibmnl indicated a straddled root 2 which §
was then determined to 10'3 by successive linear interpolations. The process
was then repeated at intervals of Q 'of 5x107°, Figs. 2 and 3 required
§ i about 58 and 49 hours of computation, respectively, on the HP-85.

In Fig. 2:

F22...30 are overtones of flexure
FS11...15 are overtones of face-shear

131 fis the ISt thickness-shear (fundamental).

R e e L T =~



In Fig. 3:

F62...74 are overtones of flexure
F$37...41 are overtones of face-shear

1,33...35 are anharmonic overtones of the ISt (fundamental)

L thickness-shear

2323...27 are anharmonic overtones of the Z"d transverse
thickness-shear

3]1 is the 3rd harmonic thickness-shear overtone.

The numbers following the symbols F, FS, 1]. 23 and 3] designate both the
order of the overtone and the approximate number of half-wave-lengths between
xy=ta.

Fig. 2 illustrates the well known phenomenon of strong coupling of the
ISt thickness-shear fundamental with flexure overtones and weak coupling with
face~shear overtones. Fig. 3 shows that the 3rd harmonic thickness-shear
mode has moderately strong coupling with flexure overtones and weak coupling
with face-shear overtones and, in addition, weak coupling with transverse

rd harmonic thick-

thickness-shear overtones. As for the interaction of the 3
ness-shear overtone with the anharmonic overtones of the fundamental thickness
shear, the coupling is moderately strong at small a/b (thick plates and low-
order anharmonic overtones) and diminjshes as a/b increases (thin plates and
increasing order of anharmonic overtones).

Finally, the minimum absolute values of the slopes of the segments 111
are much larger than those of 31. For large a/b, the ratio of those
slopes is approximated by the ratio of the curvatures of branches 3] and 1]
at z=0 1in Fig. 1. The exact values of those curvatures, in the three-

dimensional theory, were given by Ekstein [7, Eq. 56]:




Ky = [dzn/dzzl = k +Ccot(nm/2 cg) + D cot(nn/2 cg),
z=0

where

k = (cqy +A+B), n=1,3,5...,

[(1+E]2)cos o + (514 + Ess)sin 6]2/(1-c2).

>
"

B = [(c':]4 + Ess)cose - (1+E]2)sin 6]2/(1-c3).

C = 4[(c, + Elz)cos 8 + (CZE56 + E]4)]2/n2n cg(l-cz)2 .
D = 4[(cy+ E]Z)sin o - (c3E56 + 514)]2/n2n cg(l-c3)2 R
ety = (g *+ Ggq £ [y - Egp)” + 451002,

tanG = C24/(C2 - (-:44) .

For the present case, the curvature ratio k1/k3 is 4.7 and that is the
ratio of the slopes.

The large ratio of slopes and the absence, at large a/b, of strong
coupling with all overtones except those of flexure (which, at such high over-
tones, have very small amplitudes) are important contributors to the high

stability of third harmonic overtone resonators.
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